首个开源多模态Deep Research智能体,超越多个闭源方案
首个开源多模态Deep Research智能体,超越多个闭源方案首个开源多模态Deep Research Agent来了。整合了网页浏览、图像搜索、代码解释器、内部 OCR 等多种工具,通过全自动流程生成高质量推理轨迹,并用冷启动微调和强化学习优化决策,使模型在任务中能自主选择合适的工具组合和推理路径。
首个开源多模态Deep Research Agent来了。整合了网页浏览、图像搜索、代码解释器、内部 OCR 等多种工具,通过全自动流程生成高质量推理轨迹,并用冷启动微调和强化学习优化决策,使模型在任务中能自主选择合适的工具组合和推理路径。
疯狂的七月已经落下了帷幕,如果用一个词来形容国产大模型,「开源」无疑是当之无愧的高频词汇。
在生成式 AI 时代,全球数据总量正以惊人速度增长,据 IDC 预测,2025 年将突破 180ZB,其中 80% 为非结构化内容,传统数据分析在应对多模态信息和打破结构化数据技术壁垒方面尽显乏力,“人工找数 + 手动分析” 的模式严重抑制甚至沉没了数据价值。
近半年,Agentic AI 创新步伐明显加快。更强的自主决策、更丰富的多模态融合,以及与外部系统的深度协作,正推动产品加速落地与商业化。
2025年被视为 AI Agent元年,各家科技巨头也纷纷出手,谁都不想错失这个火热的赛道。
年初,DeepSeek 前脚带来模型在推理能力上的大幅提升,Manus 后脚就在全球范围内描绘了一幅通用 Agent 的蓝图。新的范本里,Agent 不再止步于答疑解惑的「镶边」角色,开始变得主动,拆解分析需求、调用工具、执行任务,最终解决问题……
GUI 智能体正以前所未有的速度崛起,有望彻底改变人机交互的方式。然而,这一领域的进展正面临瓶颈:现有数据集大多聚焦于 10 步以内的短程交互,且仅验证最终结果,无法有效评估和训练智能体在真实世界中的长时程规划与执行能力。
近年来,大语言模型(LLM)已展现出卓越的通用能力,但其核心仍是静态的。面对日新月异的任务、知识领域和交互环境,模型无法实时调整其内部参数,这一根本性瓶颈日益凸显。
智能体元年,处处都是智能体。甚至刚落幕的ISC.AI 2025第十三届互联网安全大会,主题直接就是“ALL IN AGENT”。
MiniMax 现在正在主动加速「从功能到可流通生产力」的进程。他们正在举办一场总奖金高达 15 万美元的 AI Agent 全球挑战赛,核心理念是「让自己的 Idea + Agent 成为生产力,成为市场中的硬通货」。Remix 则是官方重点推荐的参赛入口之一。